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Abstract—Security is emerging as a key area of focus in the 

Internet of Things. Lightweight implementations of the required 

security features are the need of the hour considering the resource 

constrained nature of the underlying nodes and networks. At the 

same time, it is essential to ensure that such implementations are 

robust, reliable and efficient. This paper addresses this need by 

providing a framework for implementing a lightweight version of 

the Datagram Transport Layer Security protocol in the Internet 

of Things. In addition, a real-world application scenario 

incorporating this lightweight security approach is included for 

illustration in this position paper. It also sheds light on the ongoing 

standardization activities in the security domain and relevant 

future directions to help practitioners keep abreast of all the 

related developments. 
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I.  INTRODUCTION 

The nodes in Internet of Things (IoT) often have constraints 
regarding their resources such as computational power, memory 
size and power management. Network communication, 
especially wireless, also imposes additional restrictions such as 
low bitrates, variable delays and high packet losses. Due to their 
pervasive nature, sensitive data can be collected and transmitted 
from different sources for both public and private use [1]. 
Consequently, security of transmitted data as well as source 
authentication are crucial. Security can be provided at different 
layers of the underlying protocol stack. Typically, application 
layer protocols often delegate security mechanisms to the 
transport layer, which helps in achieving end-to-end security. 
And the overhead due to this security mechanism is very 
relevant to the overall system performance. One such protocol is 
Datagram Transport Layer Security (DTLS) [2], which 
additionally has inbuilt binding within Constrained Application 
Protocol (CoAP) [3], which is a specialized web transfer 
protocol intended to be used by constrained devices in IoT. 
Though DTLS was not designed with lossy networks and 
constrained devices in mind, it has emerged as a key candidate 
to provide security in IoT. However, it cannot be employed as is 
since it is considered to be too heavy for resource constrained 
environments. Instead, lightweight implementations of DTLS 
are more suitable for use in IoT. 

A typical communication scenario between an unconstrained 
network and a constrained network is shown in Fig. 1. An 
unconstrained network is typically represented by the Internet, 
whereas the IoT consisting of a low power wireless personal area 
network (LoWPAN) represents the constrained domain. 

 

 

Fig. 1. Networking and communication scenario in IoT. 

An IoT gateway placed on the edge between the 
unconstrained network (UCN) and the constrained network 
(CN) adapts the communication between these two domains. Its 
role usually involves the adaptation between different protocol-
layer implementations. Also called a border router, it carries out 
protocol translations vis-à-vis end-to-end IoT security as 
illustrated in Fig. 2.  

Since the gateway is generally an unconstrained device, it 
can also be used for scaling down the functionalities from the 
UCN to the CN domain and also for managing security settings 
in peripheral constrained networks [4]. To maintain the end-to-
end approach, the gateway needs to remain invisible to the 
communicating endpoints. As shown in Fig. 1, a node on the 
UCN can be either HTTP enabled or only CoAP enabled. 

 

Fig. 2. Architecture for end-to-end security in IoT. 

This paper is organized as follows: the next section 
introduces DTLS and its security features. Section III provides 
an overview of CoAP and state-of-the-art on lightweight DTLS 
implementations. Our guidelines on lightweight DTLS 
implementation techniques for CoAP-based IoT are elaborated 
in Section IV. It also includes a real-world application scenario 
that illustrates the integration of different variants of DTLS with 
CoAP. Section V provides an overview of ongoing 
standardization activities in the DTLS domain, while future 
directions are outlined in Section VI.  
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II. DTLS OVERVIEW 

A. Transport Layer Security 

Transport Layer Security (TLS) offers communication 
security at the transport layer to protect HTTP applications 
running on top of TCP. TLS version 1.2 is defined in RFC5246 
[5]. This version of TLS offers more flexibility in the sense that 
ciphersuites that were hardcoded in the Pseudo-Random 
Function (PRF) in earlier versions are replaced with cipher-
suite-specified PRFs. All TLS versions separate authentication 
and key exchange, and bulk data protection. The former is more 
expensive in terms of performance and message size. Particulars 
of authentication and key exchange using the TLS handshake 
vary with the ciphersuites selected. Once the TLS handshake is 
established, the necessary keying parameters are setup for use 
with the TLS Record Layer (RL) that is responsible for bulk data 
protection. Ciphersuites used for the TLS RL include AES-
128/AES-256 with SHA-1 and RC4 with SHA-1/MD5. TLS 
may also be used without RL as in Secure Real-time Transport 
Protocol (SRTP) using DTLS (DTLS-SRTP) [6]. 

TLS was designed for reliable transport protocols, thus it 
expects no loss or reordering of messages from the transport 
layer. If a message is lost or appears out of order, it assumes an 
attack and thus drops the connection. Hence, it cannot be used 
with unreliable transport protocols that are invariably lossy in 
nature. This led to the emergence of the Datagram Transport 
Layer Security (DTLS). 

B. Datagram Transport Layer Security 

DTLS is derived from, and inherits some characteristics of 
TLS. It allows re-use of TLS security functionalities on top of 
User Datagram Protocol (UDP). With the emergence of CoAP 
as a specialized web transfer protocol for constrained devices, 
DTLS is the preferred security protocol in IoT.  

Like TLS, DTLS also has a base protocol called Record 
Layer, and four sub-protocols on top, namely Handshake, 
ChangeCipherSpec, Alert Protocol and the application data 
protocol as explained in [2]. The required security features for a 
specific smart object application in IoT depend on various 
factors such as the underlying communication architecture and 
the threats to be mitigated [7]. 

III. STATE-OF-THE-ART 

A. Constrained Application Protocol 

CoAP is a specialized web transfer protocol intended to be 
used by constrained devices in IoT/M2M applications. It 
provides a client/server interaction model between application 
endpoints and includes the same key functionalities of HTTP. 
For this reason, CoAP can be easily interfaced with HTTP, 
resulting in simplified web integration while also ensuring M2M 
critical requirements such as low overhead, multicast support, 
built-in discovery and simplicity.  

B. Lightweight DTLS 

IoT nodes often have constraints regarding their resources 
such as computational power, memory size and power 
management. Network communication, especially wireless, 
also imposes additional restrictions such as low bitrates, 
variable delays and high packet losses. In addition, since frames 

at the link layer are much smaller than the IPv6 MTU of 1280 
bytes, additional adaptation mechanisms such as 6LoWPAN [8] 
for IEEE 802.15.4 networks is required, which further limits the 
network capacity. However, application layer protocols often 
delegate security mechanisms to the transport layer, which 
helps in achieving end-to-end security. And the overhead due 
to this security mechanism is very relevant to the overall system 
performance. One such protocol is DTLS, which additionally 
has inbuilt binding within CoAP. Though DTLS was not 
designed with lossy networks and constrained devices in mind, 
it has emerged as a key candidate to provide security in IoT. 
However, it cannot be employed as it is since it is considered to 
be too heavy for use in constrained environments and networks 
such as IoT. Thus emerged several lightweight implementations 
of DTLS for use in IoT, some of which are explained below to 
give us the required insight into the state-of-the-art techniques 
in this emerging domain. 

C. Lightweight DTLS Implementation 

Implementation of DTLS could be based on employing any 
of the following techniques: 

- Pre-shared Key (PSK) 

- Raw Public Key 

- Certificates 

PSK based implementation examples are elaborated in the 
following subsection. However, DTLS implementations based 
on certificates and raw public keys are currently out of scope of 
this paper as they are considered to be very heavy for IoT. 

1) TinyDTLS 

TinyDTLS is a software library that provides a very simple 

datagram server with DTLS support. It is designed to support 

session multiplexing in single-threaded applications and thus 

specifically targets embedded systems. It is distributed under 

the MIT License [9]. Its salient features include: 

- Basic support for DTLS with PSK only 

- No support for public key cryptography  

- Supports HMAC-SHA256  

- Supports Rijndael (AES) 

- Supports clock handling, NetQ, PN number generation 

2) Lightweight TinyDTLS 

This lightweight DTLS implementation is based on the 

open-source library TinyDTLS, which in turn is ported to 

Contiki [10]. It has the following salient features: 

- Supports AES-128 and SHA-256 

- No support for CCM  

- No DTLS message fragmentation  

- Limited alert protocol  

- Not compliant with DTLS IETF RFC 6347 

- Compliant with Class 1 device specifications (<10 KB 

RAM, <100 KB Flash) 

3) CoAP over DTLS - TinyOS Implementation 

It includes the integration of three libraries that implement 

lightweight versions of DTLS and CoAP protocols as well as 
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the IPv6/6LoWPAN stack. It is implemented using the nesC 

programming language in TinyOS [11]. Its salient features are: 

- Provides integration of DTLS with CoAP and 6LowPAN 

- Defines the necessary interfaces 

- Includes DTLS with PSK only 

- No support for public key cryptography support 

- Supports HMAC-SHA2  

- Supports Rijndael (AES) 

- Supports CCM 

- Supports clock handling, NetQ, PN number generation 

- Not Compliant with Class 1 device specifications 

IV. LIGHTWEIGHT DTLS IMPLEMENTATION TECHNIQUES 

The TinyDTLS implementation library consists of the 
following core modules. Further details on each of these 
modules can be found in [9]. 

- DTLS 

      - State machine used to establish a DTLS session 

      - Handshake protocol definition 

      - Structure of different messages used by the protocol 

- Cryptography 

      - Encryption operations 

      - Decryption operations 

- Keyed-Hash Message Authentication Code (HMAC) 

      - Algorithm used for message authentication 

- Counter with Cipher Block Chaining Message 

Authentication Code (Counter with CBC-MAC or CCM) 

      - Actual implementation of encryption function 

      - Actual implementation of decryption function 

- Rijndael Cipher 

      - Implementation of AES 

- Secure Hash Algorithm (SHA-2) 

      - Implementation of a set of cryptographic hash functions 

A. Protocol Library 

The TinyDTLS protocol library consists of interconnection 
of several components with the main DTLS module as shown 
in Fig. 3. It contains all the logic required to handle secure 
communications including data sessions, handshake protocol 
definition and structures of different messages belonging to the 
security protocol. 

The Crypto module handles all the authentication and 
encrypt/decrypt operations. As a lightweight DTLS 
implementation, the crypto component supports only 
DTLS_PSK_WITH_AES_128_CBC_SHA-256, which is 
composed of the pre-shared key exchange algorithm and the 
128 bit AES algorithm in CCM mode.  

Message integrity and a second check for message 
authentication is achieved by the HMAC component, which 
calculates a MAC through the SHA-256 function in 
combination with a secret cryptographic key generated from the 
master secret realized during the handshake phase [12].  

 

The Clock Handling module carries out default 
implementation of the internal clock and the Random Number 
Generation module generates random numbers, both of which 
are employed in the computation of secret keys. 

 

 

Fig. 3. TinyDTLS protocol library structure. 

 

The Memory Allocation module allocates memory to peers 
as well as help freeing memory allocated to them. The Network 
Packet Queue (NetQ) utility functions implement an ordered 
queue of data packets to send over the network and can also be 
used to queue received packets from the network. 

B. Interaction Architecture and Interfaces 

The interaction between CoAP and DTLS modules is 

illustrated in the architecture diagram in Fig. 4. It also depicts 

the interaction between CoAP, UDP and 6LoWPAN (6LP). In 

case, no security is desired by the corresponding application, 

CoAP bypasses its interaction with DTLS and communicates 

directly with UDP and 6LP instead. 

The required interfaces between CoAP and DTLS in both 

forward and reverse directions of data flow are shown in Fig. 5 

and Fig. 6 respectively.  

In the forward direction, a CoAP packet is sent to the DTLS 

module for adding security functionality. This operation needs 

two interfaces: one for reading normal data packets from CoAP 

to DTLS and the other for sending encrypted data packets from 

DTLS. Afterwards, the encrypted data packets are sent across 

to UDP. These three steps are indicated numerically in Fig. 5. 
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Fig. 4. CoAP-DTLS interaction architecture. 

In the reverse direction, secured data packets received from 

UDP/6LP are sent across to DTLS for decryption. This 

operation also needs two interfaces: one for reading secured 

data packets from UDP and the other for sending decrypted data 

packets from DTLS back to CoAP, which in turn transfers this 

data to the corresponding application above it.  

 

Fig. 5. Encrypting a CoAP packet using DTLS. 

 

 

Fig. 6. Sending a DTLS decrypted packet to CoAP. 

The various interfaces defined earlier that are employed 

during the forward and reverse data flow directions are further 

elaborated below. These interfaces are essentially defined by 

the TinyDTLS implementation library available at [9]. The 

minimum configuration required for any useful communication 

to take place include the creation of the DTLS context, read and 

write call backs and registration of the key management 

function. 

The pseudo-code for Read Callback interface that is 

invoked once the DTLS session is established, and the 

application data has been received, is given in Fig. 7. 

int read_from_peer(dtls_context, session, data, length)  

{ 

return dtls_write(context, session, data, length);  

} 

Fig. 7. TinyDTLS read callback interface. 

In the pseudo-code for Write Callback interface given in 

Fig. 8, the callback function send_to_peer() is called whenever 

data needs to be sent over the network. Here, the sendto() 

system call is used to transmit data within the given session. 

    int send_to_peer(dtls_context, session, data, size)  

   { 

      int fn = dtls_get_app_data(dtls_context); 

      return sendto(fn, data, size, session->addr, session->size); 

   } 

Fig. 8. TinyDTLS write (send) callback interface. 

Here, dtls_context refers to a specific instance of the DTLS 

library corresponding to a particular application, session refers 

an active secure connection that has been established, data 

refers to the message to be secured, and length refers to the 

length of the above message. 

C. Lightweight DTLS Application Scenario 

Our IoT home automation application scenario to 

demonstrate light control, temperature and humidity sensing on 

a reference hardware board on the right through a web browser 

on the left is shown in Fig. 9. It also involves a web layer in the 

middle, which includes a web gateway service that performs 

HTTP to CoAP translation. This application involves secure 

CoAP, meaning CoAP packets are secured using DTLS. For 

securing the CoAP link between the web and device layers, we 

employ lightweight TinyDTLS implementation on the device 

layer and the Scandium DTLS implementation on the web 

layer.  

This implementation is unique since different forms of 

DTLS are successfully integrated to provide secure CoAP 

functionality. For total end-to-end security between the browser 

and the end device, TLS has to be employed between the 

browser and web layers in addition to the DTLS security 

mentioned above. 
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Fig. 9. Application scenario involving CoAP over DTLS. 

 

V. STANDARDIZATION ACTIVITIES 

The recently formed IETF DTLS In Constrained 
Environments (DICE) [13] working group is leading the 
activities on supporting the use of DTLS in constrained 
environments with the following tasks: 

- To define a DTLS profile that is both suitable for IoT 
applications and can be reasonably implemented on many 
constrained devices.  

- To define how DTLS record layer can be used to transmit 
multicast messages securely.  

- To investigate practical issues around the DTLS handshake 
procedure in constrained environments. Many current systems 
end up fragmenting messages, and the re-transmission and re-
ordering of handshake messages results in significant 
complexity and reliability problems. Additional reliability 
mechanisms for transporting DTLS handshake messages are 
required as they will ensure that handling of re-ordered 
messages needs to be done only once within the stack.  

However, DICE does not intend to modify the DTLS state 
machine. Moreover, key management and multicast session 
setup are out the scope for the initial work. 

There are several ongoing IoT/M2M standardization 
activities such as OneM2M, ETSI M2M, GISFI, AllSeen 
Alliance, OIC, ITU GSI, Thread and so on, which are beyond 
the scope of this paper. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

The requirements for providing end-to-end security in 
constrained IoT environments such as those based on CoAP and 
DTLS are quite stringent. Nevertheless, lightweight security 
implementations still make it possible as illustrated in the 
previous sections. Taking it a step further, we intend to make 
available in the near future the detailed performance metrics for 
our application that employs the lightweight security 
mechanism described earlier. 

To improve the overall performance further, the actual 
implementation of these security techniques on the underlying 
hardware plays a key role. In addition, availability of in-built 
crypto functions such as AES in hardware makes a lot of 
difference to the memory footprint and energy efficiency, both 
of which are of great interest to IoT. 

 

Furthermore, it is essential that these implementations are 
carried out taking into consideration the necessity of making 
room in the near future for modifications arising out of the 
ongoing standardization activities such as IETF DICE. 
Additionally, interoperability capabilities can be looked into 
through participation in events such as ETSI plug-tests.   

Considering the overwhelming importance, relevance and 
necessity of end-to-end security in IoT, it is considered essential 
to make provision for session-based security functionalities at 
different and multiple layers of the protocol stack so that it is 
both robust and flexible to meet the application requirements. 
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